Наверх

Построить график функций с помощью производной: f(x)=-x?+12x

Построить график функций с помощью производной: f(x)=-x?+12x
  • Поделиться
1 ответ 69 13 Авг 2018 в 12:21 1 рейтинг
Войдите, чтобы оставить свой ответ
Войти Зарегистрироваться
ЕваИванова Поделится
  • Поделиться
Производная функции f(x)=4x^3-6x^2 равна:
f '(x) = 12x? - 12x.

Исследовать функцию f (x) = 4x?–6x? и построить ее график.Решение:1. Область определения функции - вся числовая ось.2. Функция f (x) = 4x?–6x? непрерывна на всей области определения. Точек разрыва нет.3. Четность, нечетность, периодичность:График четной функции симметричен относительно оси ОУ, а нечетной — относительно начала координат О.
 f(–x) = 4(–x)?–6(–x)? = –(4x?+6x?) ? –f(x),f(–x) = 4(–x)?3–6(–x)? = –(4x?+6x?) ? –f(x)Функция не является ни четной, ни нечетной. Функция непериодическая.4. Точки пересечения с осями координат:Ox: y=0, 4x?–6x?=0, 2x?(2x–3)=0 ? x=0, x=3/2. Значит (0;3/2),  - точки пересечения с осью Ox. Oy: x = 0 ? y = 0. Значит (0;0) - точка пересечения с осью Oy.5. Промежутки монотонности и точки экстремума:y'=0 ? 12x?–12x =0 ? 12x(x–1) = 0 ? x = 0, x = 1 - критические точки.Если производная положительна - функция возрастает, если производная отрицательна - функция убывает:отрезок  -? < x < 0   функция возрастает,отрезок 0 < x < 3/2   функция убывает,отрезок 3/2 < X < ?   функция возрастает.7*. Вычисление второй производной: у =4x?–6x?, f '(x) = 12x? - 12x. f ''(x) = 24x - 12.y''=0, 24x–12= 0, x = 12/24 = 1/2. 8*. Промежутки выпуклости и точки перегиба:отрезок  -? < x < 1/2  график функции выпуклый вверх,
точка перегиба х = 1/2,отрезок 1/2< x < ?  график функции выпуклый вниз.9. Найдем значение функции в дополнительной точке: f(1/2) = 4*(1/2)?– 6(1/2)? = 4/8 -6/4 = (4-12) / 8 = -8/8 =  –1.10. Искомый график функции в приложении.
Не нашли ответ на свой вопрос? Попробуйте спросить